[ | E-mail | Share ]
Contact: Brian Murphy
brian.murphy@ualberta.ca
780-492-6041
University of Alberta
(Edmonton) A team of University of Alberta researchers has identified a new class of compounds that inhibit the spread of prions, misfolded proteins in the brain that trigger lethal neurodegenerative diseases in humans and animals.
U of A chemistry researcher Frederick West and his team have developed compounds that clear prions from infected cells derived from the brain.
"When these designer molecules were put into infected cells in our lab experiments, the numbers of misfolded proteins diminishedand in some cases we couldn't detect any remaining misfolded prions," said West.
West and his collaborators at the U of A's Centre for Prions and Protein Folding Diseases say this research is not yet a cure, but does open a doorway for developing treatments.
"We're not ready to inject these compounds in prion-infected cattle," said David Westaway, director of the prion centre. "These initial compounds weren't created for that end-run scenario but they have passed initial tests in a most promising manner."
West notes that the most promising experimental compounds at this stage are simply too big to be used therapeutically in humans or animals.
Human exposure to prion-triggered brain disorder is limited to rare cases of Creutzfeldt-Jakob or mad cow disease. The researchers say the human form of mad cow disease shows up in one in a million people in industrialized nations, but investigating the disease is nonetheless well worth the time and expense.
"There is a strong likelihood that prion diseases operate in a similar way to neurodegenerative diseases such as Alzheimer's, which are distressingly common around the world," said West.
###
The research was funded by the Alberta Prion Research Institute, part of Alberta Innovates Bio Solutions.
The lead author on the research was Charles Mays of the Centre for Prions and Protein Folding Diseases. The research was published in the journal Biomaterials.
[ | E-mail | Share ]
?
AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert! system.
[ | E-mail | Share ]
Contact: Brian Murphy
brian.murphy@ualberta.ca
780-492-6041
University of Alberta
(Edmonton) A team of University of Alberta researchers has identified a new class of compounds that inhibit the spread of prions, misfolded proteins in the brain that trigger lethal neurodegenerative diseases in humans and animals.
U of A chemistry researcher Frederick West and his team have developed compounds that clear prions from infected cells derived from the brain.
"When these designer molecules were put into infected cells in our lab experiments, the numbers of misfolded proteins diminishedand in some cases we couldn't detect any remaining misfolded prions," said West.
West and his collaborators at the U of A's Centre for Prions and Protein Folding Diseases say this research is not yet a cure, but does open a doorway for developing treatments.
"We're not ready to inject these compounds in prion-infected cattle," said David Westaway, director of the prion centre. "These initial compounds weren't created for that end-run scenario but they have passed initial tests in a most promising manner."
West notes that the most promising experimental compounds at this stage are simply too big to be used therapeutically in humans or animals.
Human exposure to prion-triggered brain disorder is limited to rare cases of Creutzfeldt-Jakob or mad cow disease. The researchers say the human form of mad cow disease shows up in one in a million people in industrialized nations, but investigating the disease is nonetheless well worth the time and expense.
"There is a strong likelihood that prion diseases operate in a similar way to neurodegenerative diseases such as Alzheimer's, which are distressingly common around the world," said West.
###
The research was funded by the Alberta Prion Research Institute, part of Alberta Innovates Bio Solutions.
The lead author on the research was Charles Mays of the Centre for Prions and Protein Folding Diseases. The research was published in the journal Biomaterials.
[ | E-mail | Share ]
?
AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert! system.
Source: http://www.eurekalert.org/pub_releases/2012-07/uoa-uad072312.php
jetblue michelle malkin october baby sugarland 16 and pregnant ludwig mies van der rohe jamie lynn sigler
No comments:
Post a Comment
Note: Only a member of this blog may post a comment.